
Technical Appendix

This appendix provides a detailed explanation of the mathematical formulation
used in the reinforcement learning environment, particularly how Principal
Component Analysis (PCA) and Normalization are applied to define the
state dynamics.

State Dynamics using PCA and Normalization

The state st ∈ S at any time step t represents the status of each group’s knowl-
edge, health, innovation, and potential private consumption. These fea-
tures are extracted from a set of sample data, as described earlier, and reduced
in dimensionality through Principal Component Analysis (PCA).

The process begins with generating a dataset where each feature (e.g., Sam-
pled Knowledge, Health Status, Innovation Capacity, etc.) is normalized
using Min-Max Normalization to scale the data between 0 and 1:

x′ =
x− xmin

xmax − xmin

Where x represents the feature values, and xmin, xmax are the minimum and
maximum values for that feature. After normalization, the features are com-
bined into a matrix X, where each row corresponds to an individual’s features.

Next, Principal Component Analysis (PCA) is applied to reduce the
high-dimensional feature space to three principal components:

X ′ = P ·X

Where P is the projection matrix obtained from the PCA transformation,
and X ′ represents the projected data in three-dimensional space. These three
principal components capture the most significant variance in the data and serve
as the basis for constructing the state space for the groups in the environment.

The state st for group i at time t consists of three components:

sit = (kit, h
i
t, in

i
t, p

i
t)

Where: - kit represents knowledge (derived from the first PCA component),
- hi

t represents health (derived from the second PCA component), - ini
t rep-

resents innovation (derived from the third PCA component), - pit represents
potential private consumption (calculated as a function of public investment
consumption and taxes).

Action Space and State Transitions

The actions at ∈ A represent the investments in education, health, and in-
novation for each group, constrained between -1 and 1. At each time step, the
agent chooses an action vector:

1



at = [aeducationt , ahealtht , ainnovationt ]

The state transitions are determined by the actions applied to the current
state. The update rules for each group’s knowledge, health, and innovation
values are as follows:

kit+1 = kit + 0.5 · aeducationt · (3− kit)

hi
t+1 = hi

t + 0.5 · ahealtht · (3− hi
t)

ini
t+1 = ini

t + 0.5 · ainnovationt · (3− ini
t)

Here, the factor 0.5 ensures that the growth is scaled down, and the term
(3 − x) introduces diminishing returns as the feature value x approaches its
maximum of 3.

The potential private consumption pit is updated based on the total
investment in education, health, and innovation:

pit+1 = pit + 0.5 · (aeducationt + ahealtht + ainnovationt ) · (3− pit)

All state values are clipped to remain within the range [0, 5].

Reward Function

The reward function incentivizes balanced growth across all dimensions, pe-
nalizing imbalance and extreme actions. The total reward rt at time t is:

rt = Improvement+Balanced Growth Bonus−Imbalance Penalty−0.05·
∑

d∈{aedu,ahea,ainn}

adt

Where: - Improvement is the sum of improvements across all dimensions:

Improvement =

3∑
i=1

∑
d∈{k,h,in}

(sit+1(d)− sit(d))

- Balanced Growth Bonus rewards equal growth across dimensions:

Balanced Growth Bonus = 0.05 ·mean(st+1 − st)

- Imbalance Penalty discourages uneven growth:

Imbalance Penalty = 0.1

3∑
i=1

∑
d∈{k,h,in}

∣∣∣∣∣∣sit+1(d)−
1

3

∑
j∈{k,h,in}

sit+1(j)

∣∣∣∣∣∣
- The final term 0.05·

∑
adt applies a small penalty for extreme actions to prevent

rapid changes in policy.

2



Policy Optimization: Actor-Critic Approach

The Actor-Critic reinforcement learning framework is used to optimize the
policy:

Critic Network (Value Estimation)

The critic network estimates the value of state-action pairs using a value function
Q(st, at), which predicts the expected future reward:

Q(st, at) = E

[
T∑

t=0

γtrt

]

Actor Network (Policy Optimization)

The actor network optimizes the policy by maximizing the expected return. The
policy gradient is computed using:

∇θJ(θ) = E [∇θ log πθ(at|st)Q(st, at)]

Where πθ(at|st) is the policy parameterized by θ.

Soft Updates

Soft updates are used to gradually update the target networks:

θtarget = τθlocal + (1− τ)θtarget

Where τ is a small constant (e.g., 0.005) that ensures smooth updates to the
target network.

3


